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ABSTRACT 

We investigate the effect of an infinite cosmic string on a cosmological back- 

ground. We find that the metric is approximately a scaled version of the empty 

space string metric, i.e. conical in nature. We use our results to place bounds 

on the amount of cylindrical gravitational radiation currently emitted by such 

a string. We then analyse explicitly the gravitational radiation equations and 

show that even initially large disturbances are rapidly damped as the expansion 

proceeds. The implications for the gravitational radiation background and the 

limitations of the quadrupole formula are discussed. 
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1 Introduction. 
-_ - - -  

Cosmic strings' have attracted a lot of attention recently as they give a compelling 

and plausible description of structure in the universe. They are topological defects which 

can be formed when the universe undergoes a suitable phase transition to a spontaneously 

broken symmetry state. The condition for string formation is that the vacuum manifold 

(the set of vacuum states of the theory) is not simply connected2. The strings responsible 

for galaxy formation are GUT strings, i.e. those formed during phase transitions at the 

GUT scale, 10I5GeV. Such strings are very thin (T ,  - 10'29cm) and extremely massive 

( p  - lo2' g cm-l), but knowledge of their gravitational properties is not yet complete. 

The spacetime structure surrounding a local string in an otherwise empty spacetime has 

been a n a l y ~ e d ~ - ~ ,  and the spacetime was found to be asymptotically conical. Whilst this 

is a useful test calculation, otherwise empty universes hardly correspond with our own, 

which currently on a large scale behaves like a matter dominated F'riedmann-Robertson- 

Walker (FRW) cosmology. Since we do on average expect at least one string per horizon 

volume', we must check that these properties are not modified in any essential way when 

we consider a more realistic background for the string. In particular, we expect the radius 

of the string to be fixed by the local microphysics, which will mean in general that the 

string is contracting with respect to the surrounding spacetime. This could give rise to 

interesting dynamical effects which could potentially be observable, such as cylindrical 

gravitational radiation, or particle radiation. As the most stringent constraints on the 

cosmic string scenario currently come from measurements of gravitational radiation7, this 

last feature could be of great relevance. 

' 

In this paper we address the problem of a string in a cylindrically symmetric universe. 

There are two approaches one could take: one can either choose a particular model for the 

energy momentum tensor of the string and calculate the metric, or one can try the more 

complete treatment of regarding the string as a vortex solution to the equations of motion 

of some suitable spontaneously broken local gauge theory. The former has the advantage 

of simplicity, but neglects the more detailed structure of the string accounted for by the 

latter. 
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We begin our investigation of the problem by using the most common model for a 

string: the wire-or delta function source. 'This gives an idea of the essential structure of the 

spacetime (which is again conical), however there are complications in using distributional 

sources in general relativity' and the validity of this approximation should be justified. 

Therefore we proceed to analyse the full coupled equations for a Nielsen-Olesen vortex in 

matter and radiation dominated F'riedmann universes which confirms the conical structure 

and also allows us to examine the question of cylindrical gravitational radiation from 

strings. 

2 The Wire Approximation. 

We start by summarising the formalism for dealing with cylindrically symmetric sys- 

tems. We use the work of Thorne' as a basis. The metric of our universe may be written 

as 

9 (2 .1)  ds' = e'('-*)(&' - &') - e2qdz2 - d2e-2qdfl2 

where A, \E and I' are functions of T and t only. We will assume that the energy momentum 

tensor splits into the form Tab + Sob, where Tab is the energy momentum tensor for the 

background matter fields (which are homogeneous and isotropic) and s a b  the string energy 

momentum tensor. With this splitting, the field equations take the form: 

A - d" = 8 x G f i ( T , O  + T: + S,O + S;) ( 2 . 2 4  

d d -(d$) - -(A!&') = 4xG&(Tt + T,' + T: - T,' + S," + Sr + S i  - Sz) 
dt  dT (2.2b) 

(A" - d2)P = 8 x G J - g [ d f ( T , 0  + S,O) + d(Tl + Sl)] 

+ Mf($ + !&") - 2 d h k ' 4  + d'd" - &$ (2.2c) 

(d2 - df2)f  = 8aG&[A(Tt + S,") + d'(T,' + S:)] 

+ AA($ + qt2) - 2 M t \ E f @  + Ur - 
- &' + ~ T G ~ ' ( ~ - * ) ( T :  + Si). 

(2 .2d)  

(2 .2e)  f' - r'' = 

where f i  = 

time derivative and a prime radial derivative. 

is the square root of the determinant of the metric, a dot denotes 
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In the otherwise empty space case the approximation of the string by a delta function 

or wire sourceteadily gave the essential asymptotic structure of the spacetime3. We adopt 

this approach here, using the wire model to investigate asymptotic structure. Therefore 

for the string source we set 

The boundary conditions are 

d'(0,t) = er('*'), I'(0,O) = 2 \E(O,O)  . 

These now become formal, since T = 0 is a (distributional) curvature singularity. We do 

not expect lim d f ( T ,  t) = d'(0, t) as prescribed by the boundary conditions, indeed it is this 

discontinuity which gives rise to the curvature singularity necessitated by the distributional 

string source. 

r-0 

Examination of the field equations shows that the equation for d, (2.2a), is modified 

from the pure cosmology case 

The equation for \E, (2.2b), explicitly remains the same, as does the final equation, (2.2e). 

Although at first sight the first order equations for 1', (2.2c,d), appear modified, if we 

substitute for d'f we see that in fact the distributional term does not contribute. Notice 

also that all the equations are invariant under scaling of d by a constant. 

Integrating (2.4) over a disc of radius 6 gives 

A'((), t )  - d'(6, t )  = 8.rrGC1e2(r(0,t)-'(0*2)) 
27r 

= 4Gpdf(0, t)  

d'(6,t) = (1 - 4Gp)d'(O,t) . + 

Thus we see that the effect of the string is to multiply the d in the original cosmology 

by a factor (1 - 4Gp) to give the required discontinuity in d' at the origin. The modified 

string-plus-cosmology metric is now 

(2.6) 
2 2 -29de2 ds2 = e2(r-')(dt2 - dr2) - e2*dz2 - (1 - 4Gp) d e 9 
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which is indeed a conical spacetime, with a deficit angle of 8xGp. 

This model i s  however static, in the sense that the effect of the string is a time inde- 

pendent one. The string, being infinitesimally thin, does not participate in the expansion 

of the universe. In a more realistic situation where the string has width and internal struc- 

ture, we might expect the dynamics of the surrounding spacetime to produce dynamical 

effects in the string. This is the problem we shall consider next. 

3 Vortex solutions in Friedmann universes. 

We now try to take account of the fact that strings are in reality thick objects that 

will in general be affected by the dynamics of the surrounding spacetime. The string radius 

T ,  is generally seen as being fixed by the microphysics but a string of k e d  proper radius 

need not have fixed coordinate radius. In order to maintain a constant proper radius 

fixed by the microphysics, the string will have to resist the expansion (or otherwise) of the 

surrounding spacetime in which it sits. It is possible that this “variation” of the string 

radius with respect to the surrounding spacetime could give rise to interesting dynamical 

effects, for example cylindrical gravitational radiation or particle radiation, which may be 

observable in our universe. We will consider only local strings, since global strings have 

badly behaved asymptotic structures. In particular, we consider the case of a U(1) local 

string: the Nielsen-Olesen vortex. 

The Nielsen-Olesen string is a vortex solution to the lagrangian 

1 -  x 
4 4 

C[4,A,] = D,4tDp4 - -FPYfi”” - -(q5t4 - #)’, 

where D ,  = V, + ieA, is the usual gauge covariant derivative, and fiPY the field strength 

associated with A,. However, we will express the field content in a slightly different 

manner, in which the physical degrees of freedom are more manifest. We define the (real) 

fields X, x and P, by 

4(za )  = qX(za)e’X(zP) (3.2~) 

(3.2b) 
1 
e 

A,(za)  = - [PP(za )  - V,x(za)] . 
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In terms of these new variables, the lagrangian becomes 

where Fpv is the field strength associated with P,,. 
We can see that a vacuum state is characterised by X = 1. However, this is not 

the only stable ground state which solves the equations of motion. Nielsen and Olesen'' 

showed that there exists a non-trivial stable ground state solution to the above equations 

of motion which has a vortex-like structure. 

The Nielsen-Olesen vortex solution corresponds to an infinite, straight static string 

aligned with the z-axis. In this case, we can choose a gauge in which 

in cylindrical polar coordinates. This string has winding number one. 

We consider the case of this cylindrically symmetric string embedded in a spatially 

flat FRW universe. We will assume that the string is a perturbation in the sense that 

it is confined to a cylinder of radius T,,  which is small compared to the Hubble radius 

RH. If this were not the case, i.e. if the string width were comparable to the Hubble 

radius, then a significant proportion of the Hubble volume would lie within the core of the 

string. The dominant term in the energy-momentum tensor would be the potential term 

- l)'g,,,, which would drive a rapid expansion. In short, such a rdgime would be 

extremely gravitationally active. Furthermore, such a rdgime would not be of particular 

physical relevance, since if strings form in a post-inflationary era, the string radius will be 

considerably smaller than the Hubble radius, in fact, by a factor of about lo-''. 

Assuming T ,  << RH, the string does not affect the overall average cosmological expan- 

sion. We therefore rewrite the metric in a form more suited to the problem: 

which factors out the immediate time dependence due to the expansion of the universe. In 

terms of the previous variables 
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The pure FRW universe corresponds to 7 = 11, = 0 , a = T 

d.9’ = n 2 ( t ) [ d f 2  - dT2 - d Z 2  - T2de2]  , - _ - - -  

and the Thorne equations give 

(3.7) 

which will be useful in the simplification of the field equations later. For a matter dom- 

inated cosmology only the energy density is non-zero, which leads to a conformal factor 

n(t) = t 2 .  For a radiation dominated cosmology T’ = Tee = T,” = -‘To giving n(t) = t. 

Note that t here is conformal time rather than cosmological time. 

We consider the Nielsen-Olesen vortex string embedded in one of these cosmologies, 

and consider only the generalisation of a simple string in vacuo to a time dependent string 

in FRW by setting 

4 = qX(T, t)eie (3.9a) 

(3.9b) 
1 
e 

A,  = -(P(T,f) - I)V,8 

In terms of these fields, the Lagrangian is given by 

To simplify the discussion we will set 2e2 = X in order that the gauge and scalar parts of 

the string have the same width; this will not qualitatively affect the results. 

To clarify the analysis of the equations, we will scale out the X,q dependence by 

introducing the dimensionless variables: 

p = JATT 7 = JAqt c = 8rGq2 6 = dIqa (3.11a) 

E = S;/Xq4 - Pp = SF/Aq4 - Po = Si/Xq4 - P, = S:/Xq4 . (3.11b) 
I 
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Thus the characteristic energies and pressures of the string are 0(1) and the radius of the 

string likewise. .Notice that the static equality E + P, = 0 no longer need hold due to the 

potential time dependence of the string fields. 

Using equations (3.7) for simplification, we may write the full set of equations for the 

system: 

[tif2 - - 4 & i  - 4ii a n 2  (A)  17' = 8.nGR2&e2(7-+)[&'St + (& + 2&k)S i ]  - a : I  (& * + 2 & 8 )  

[A2 + 4&$ + 4& 2 n 2  (A) - B f 2 ] j  = 87rGR2&e2(7-+)[(h + 2ii$)S,0 + &'S,'] + &"(& + 2&8) 

+&&'($' + 2 4 8  + $ I 2 )  - 2&$,'(h + 258)($  + g) + &ti" - 2&'h$ ( 3 . 1 2 ~ )  

for the gravitational fields, and 

for the string fields, where prime and dot now denote derivative with respect to the scaled 

parameters Q and r respectively. 

So far the discussion has been general, however the equations (3.12) are so involved 

that we clearly need some physical simplifications in order to make progress. Recall that 

the string radius T ,  was seen as being fixed by the microphysics. This statement implicitly 

assumes that T ,  << RH, the Hubble radius, otherwise the notion of the string as a separate 

entity would break down. Since T ,  - 10-29cm for GUT strings this statement is clearly 

valid in the post inflationary era, indeed T, /& - at the present time! In the 

dimensionless variables T,/RH = h / R 2  therefore a reasonable first approximation to the 
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problem is certainly to discard all terms of order h/n2 or higher. But in fact we can go 

further than this; The value of T,/& at the time of string formation is of the order of 

At such a time, the universe is radiation dominated, and T , / R H  a T - ~ ,  thus h/n, 
which is proportional to T- ' ,  is of the order of lo-'' at the time of string formation. We 

may therefore conclude that at subsequent times h/n will be less than lo-'' and can 

therefore also be ignored. 

Before writing down the simplified field equations, we will make one other observation. 

When strings are formed during a phase transition we do not expect them to be in their 

equilibrium field configuration, however we do expect them to settle to this in a timescale 

of order ( f i q ) - l .  This process of 'settling in' will generate some high frequency primordial 

gravitational radiation (which we will consider later), of a qualitatively different nature 

to that produced by the cosmological expansion. In searching for a solution representing 

a string in an expanding universe, we will consider the situation in which the string has 

already settled to its equilibrium configuration, so that the spacetime on the symmetry 

axis is locally F'riedmannian, i.e. 7,$ + 0, a - T as T + 0. 

Making these approximations, we arrive at the considerably simpler looking set of 

equations: 

n-'(& - ,") = &2(7-*)(z - pp) ( 3 . 1 3 ~ )  

- 1  52-2 [(&' - ,,), + 2,,'$'4 - ,"h + a a - Gh(?j2 + $91 

for the spacetime fields, and 
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for the matter fields. 

Apart from the factors of fl-2, these equations are reminiscent of the empty space 

equations for the string which have a minimum energy static solution5. Having made this 

observation, we will propose the following Ansatz for the fields 

(3.14) 

&,PO etc. are the static empty space cylindrical solutions5, the slightly unusual final 

scaling being to preserve boundary conditions on axis. 

For pfl  > T. these functions are given by the asymptotic forms of the empty space 

solutions in [5], viz. 

x - 1  P - 0  

7 ° C  $-C/2  (3.15) 

which clearly solve (3.13) to O ( T ~ / & ) .  For p n  C T8, we see that (e.&) 3 = o(h/fl)x' 
and thus the equations are satisfied to O ( i / f l ) l .  

Thus the string-cosmology spacetime essentially looks like a scaled version of a string 

in a vacuum spacetime. Any corrections to the fields appear at order (h/fl)2, which, as 

we have argued, is negligible in any physical rigimes. 

4 Cylindrical Gravitational Radiation. 

In the previous section we derived the spacetime structure for a Nielsen-Olesen vortex 

string in a F'riedmann universe. In this section we deal with the problem of gravitational 
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radiation kom such a string. The most stringent bounds so far on the mass per unit 

length .of cos&-strings come from consideration of the gravitational radiation intensity 

of a network of cosmic string loops?. We expect about one infinite string per Hubble 

volume, therefore any source of gravitational radiation from such structures is potentially 

important. By considering the total C-energy of the string inside the Hubble volume we 

can place an upper bound on the amount of cylindrical gravitational (or other) radiation 

present without going into a detailed analysis of the first order corrections to the string 

fields. 

We use the generalised C-energy density per unit length': 

1 
E(T)  = - 8G [1 - (AT, - d:t)e-2r ]L  - 

In order to clarify the interpretation of the C-energy of the composite system, we first 

calculate the C-energy of the pure cosmology and the pure string case. 

For the pure cosmology, A = rn2 and I' = 2 log n, which gives 

4 
2G 

Therefore if we evaluate the C-energy at a fixed proper radius T O  = TQ, 

For the pure string, A = a, r = 70, giving 

For the string plus cosmology case, computing the C-energy at a fixed proper radius 

T O  = TSI outside the source we obtain 

10 



Outside the source a - AT + B / f i q Q ,  hence dr = O ( T , / R H ) ,  and we obtain 

p is the energy per unit length of the string and is constant. The second term represents 

the cosmological energy density (adjusted for the angular deficit). Thus the C-energy is the 

sum of the cosmic string energy plus the energy due to the background cosmological matter 

distribution contained within the cylinder of radius T O ,  plus a piece of order (.,/RH). 
We may now place an order of magnitude bound on the energy contained in cylindrical 

gravitational radiation in a Hubble volume as follows. Since is constant, the energy per 

unit length of string being emitted is at most O(T, /RH) .  The total length of string in a 

Hubble volume is approximately R H ,  and the Hubble volume RL, thus the average energy 

density per Hubble volume due to cylindrical gravitational radiation is at most O(f , /R&) .  

However, we see that the energy density of the universe is of order R i a ,  thus the string 

radiation is suppressed by a factor of T , / R H .  At the present time T,/RH - and 

even at the time of nucleosynthesis T, /RH - thus the cosmological radiation from 

strings is negligible and the geometry surrounding the string can be taken to be conical. 

It only remains to show that the gravitational radiation produced by the strings during 

their formation and settling in does not affect this conclusion. As mentioned earlier such 

gravitational radiation will be composed mainly of high frequency components. 

We will first comment on gravitational radiation in an otherwise empty background 

as this &bits several interesting features we wish to illustrate. We will then show how 

these carry through and become modified in the case of a radiation dominated universe. 

Setting = 1, outside the string we obtain 

(4.54 

(4.5b) 
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In the absence of radiation the asymptotic solutions are & - (1 - 4Gp)p and y = 2$ - -C 
as p + 00. The energy of the string fields is exponentially damped therefore ‘asymptot- 

ically’ essentially means ‘outside the string’. We will therefore look for solutions of the 

form 

c i  = (1 - 4Gp)p + & ( p , r )  

Y = -c + 7 l ( P , T )  

1c, = - c / 2  + $1(P,4 

( 4 . 6 ~ )  

(4.6b) 

( 4 . 6 ~ )  

with &1 << & etc. Linearising the above equations gives 

& - 6 ;  = o  

4 1  - $: - & / P  = 0 

(1 - 4 G ~ ) ~ 7 :  = (1 - 4Gp)&y 

-(I - 4Gp) ’ j l  = -(1- 4Gp)hi 

71 - 7:‘ = 0 

(4.7a) 

(4.7b) 

(4.7c) 

(4.7d) 

(4.7e) 

Thus & and 7 satisfy the two-dimensional wave equation, y being determined by &1 up to 

a constant. $ satisfies the three-dimensionalt wave equation. Here we come to the first 

interesting feature: because $ satisfies a wave equation in an odd number of dimensions, 

Huygen’s principle does not hold. In other words, wave propagation in II, is not clean, the 

waves have ‘tails’. To see this explicitly, choose initial data $1 = p l ,  $1 = p2 on t = 0, 

then the solution for $ is” 

T 
2% 

$ l ( P , T )  =ar I ’ d T l  dedG PI( JT2 + pa - 2Tp COS e )  

(4.8) 
T 

2% 

p2( dT2 + p2 - 2Tp COS e )  

t i.e. two space plus one time dimension 
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Thus the solution for + can be seen to depend not only upon the intersection of the past 

null cone withthe surface r = 0, but also on the interior of this disc. Once a disturbance 

in $ reaches a point, it does not only pass on, but persists, rather like the reverberations 

in a bell after the initial strike. This is in contrast with the propagation in ii and 7, which 

is clean. 

These features essentially pass over into the cosmological situation. We will consider 

the case in which the universe is radiation dominated, thus modelling the epoch in which 

strings were 'settling in'. For this background, 52 = r and therefore T , / R H  = 1/r2. In the 

absence of gravitational radiation ii - (1 - 4Gp)p and 7 = 2+ - -C outside the string. 

Writing the same field decomposition as before (4.6), the linearised equations outside the 

string are 

= i.l -- 2 d :  2 p q  a1 

T (1 - 4 G p ) ~  i- (1 - 4Gp) 

(4.94 

(4.9b) 

(4.9c) 

(4.9d) 

(4.9e) 

having neglected terms of order T - ~ ,  but not T-'&. (We are implicitly considering the 

behaviour of high frequency components of gravitational radiation.) Thus we see the 

expansion factor of the cosmology entering into the equations. Note that, as before, once 

GI and $1 are determined, 71 is fixed by the remaining equations, 

(4.11) 

Consider (4.9a). Making the transformation 

13 



and neglecting terms of order T - ~ ,  we obtain 

for the high frequency alpha radiation. Hence the general solution for 61 is given by 

(4.11) 

where 7 0  represents the time of string formation. 

Thus even if we start with a very rapidly varying disturbance in &, it becomes damped 

by a factor of ( T ~ / T ) ~  = ( R ~ / R H ) ~  as the cosmological expansion proceeds. 

In order to find the solution for $1, note that a similar type of transformation 

$1 =$IT 

reduces the $1 equation to a cylindrical wave equation with a driving term: 

The general solution for 4 consists of a homogeneous part, given by (4.8), with an addi- 

tional inhomogeneous term arising from the 6 dependencell 

Again, even if we start off with very rapidly varying disturbances, we see that the above 

integrals (4.8,9) are damped roughly by a factor of r-l, and hence $1 is damped by a 

factor of T - ~ .  

We see therefore that cylindrical gravitational radiation in a cosmological background 

is damped by a factor of ( T , / & ) ~  compared with empty-space gravitational radiation. 

The tails of the +-radiation persist in the cosmological case. 

14 



5 Conclusions. 
-_  - - 

We have examined the gravitational field of a cosmic string in an expanding universe, 

and shown that it is essentially a scaled version of the pure string spacetime. The correc- 

tions to this scaled solution appear at order (.,/RH), the ratio of the string radius to the 

Hubble radius. Clearly this ratio is negligible at the current time, but even at the time of 

string formation (assuming that strings form after inflation) it is extremely small 

Thus the expanding cosmology does not have significant ramifications for the asymptotic 

spacetime structure. 

C-energy was then used to estimate the cosmological gravitational radiation from 

strings. Because the cosmic string is resisting the background cosmological expansion, we 

expect that it will produce cylindrical gravitational radiation. Our reason for supposing 

this lies in some earlier work by Cockell. He considered contracting tubes of matter in 

a fixed exterior, and found gravitational radiation. Our set-up is that of a fixed tube 

(the string) in an expanding exterior, we therefore expect radiation. An estimate of the 

C-energy shows however that the amount of gravitational radiation is extremely small. 

Further evidence for the existence of such radiation is given by Stein-Schabes and Burd13, 

who analysed the equations of motion of the string fields in a rdgime where the radius of the 

string was comparable to the Hubble radius. Although their analysis did not include back 

reaction of the string on the cosmology, the solutions obtained displayed an oscillatory 

behaviour, damping as the expansion proceeds. Such a result indicates that we might 

expect analogous behaviour of both string and gravity fields when full coupling is taken 

into account for rdgimes in which T ,  < RH. Incidentally, a cosmic string of fixed radius 

has fixed quadrupole moment, and yet can emit gravitational radiation. This is a rather 

nice illustration of the limits of the quadrupole formula14 - which is derived in flat space. 

The terms which violate the approximation occur at the scale of the spacetime curvature. 

Finally, we considered the subsequent behaviour of gravitational radiation generated 

by strings by explicitly analysing the gravitational field equations. Having shown that the 

string field configuration in its equilibrium state does not radiate significantly, we must not 

neglect the effect of primordial gravitational radiation, generated as the strings formed. 

15 



We show that this is damped by a factor of ( T , / R H ) ~ ,  and therefore even if the initial 

disturbance isItage, it rapidly becomes negligible as expansion proceeds. An interesting 

feature of this radiation is that it is not 'clean', the gravity waves develop tails. Thus the 

initial shock-wave formed as the deficit angle settles in cannot propagate cleanly away, 

however the cosmological expansion ensures that this is rapidly damped so as to become 

negligible. 

Thus we have established that cosmic strings in an expanding universe do have the 

same spacetime signature as their empty-space cousins: asymptotic conicity. Using C- 

energy, we have shown that the cylindrical gravitational radiation emitted by such a string 

contributes negligibly to the background gravitational radiation intensity. Finally, by 

considering the gravitational radiation equations in a cosmological background, we have 

shown that any radiation generated while cosmic strings form (and we might expect some 

fairly spectacular effects as the deficit angle settles in) is rapidly damped as the expansion 

proceeds. We treated these problems in the context of a flat F'riedmann model. It may 

be interesting to investigate the effect of a non-trivial spatial section on the cosmic string 

fields. Particularly in the case of a closed universe we might expect some interesting 

phenomena. 
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